Search results for "radiation: dynamics"

showing 3 items of 3 documents

Effects of radiation in accretion regions of classical T Tauri stars

2019

Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns, in which optically thin and thick plasma components coexist. Thus an accurate description of these impacts requires to account for the effects of absorption and emission of radiation. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock downfalling material. We investigate if a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. We developed a radiation hydrodynamics model describing an accretion column impacting onto the su…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)X-rays: starsAstrophysicsradiation: dynamics01 natural sciencesaccretion0103 physical sciencesThermalRadiative transferAstrophysics::Solar and Stellar Astrophysics010306 general physicsAbsorption (electromagnetic radiation)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsultraviolet: starsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsstars: variables: T Tauristars: formationaccretion disksHerbig Ae/BeAstronomy and AstrophysicsPlasmaThermal conductionAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Non-LTE radiation hydrodynamics in PLUTO

2019

Modeling the dynamics of most astrophysical structures requires an adequate description of the radiation-matter interaction. Several numerical (magneto)hydrodynamics codes were upgraded with a radiation module to fulfill this request. However, those among them that use either the flux-limited diffusion (FLD) or the M1 radiation moment approaches are restricted to the local thermodynamic equilibrium (LTE). This assumption may be not valid in some astrophysical cases. We present an upgraded version of the LTE radiation-hydrodynamics module implemented in the PLUTO code, originally developed by Kolb et al. (2013), which we have extended to handle non-LTE regimes. Starting from the general freq…

OpacityThermodynamic equilibriumFOS: Physical sciencesContext (language use)radiation: dynamicsAstrophysics01 natural sciencessymbols.namesake0103 physical sciencesRadiative transfer[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Statistical physicsDiffusion (business)Planck010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]opacityAstronomy and AstrophysicsHydrodynamicPlutoSpace and Planetary SciencehydrodynamicsMoment (physics)symbolsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

Effects of radiation in accretion regions of classical T Tauri stars

2019

Context. Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns where optically thin and thick plasma components coexist. Thus, an accurate description of these impacts is necessary to account for the effects of absorption and emission of radiation. Aims. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock down-falling material. We investigate whether a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. Methods. We developed a radiation hydrodynamics model describing an accreti…

Settore FIS/05 - Astronomia E Astrofisicaaccretion / accretion disks / stars: formation / X-rays: stars / ultraviolet: stars / radiation: dynamics / stars: variables: T Tauri / Herbig Ae/Be
researchProduct